
April 2, 2025

Perpetual Airdrop Project

Token ONE

perpetual-airdrop-project-token-one

mailto:info@omniscia.io
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795

Online report: perpetual-airdrop-project-token-one

https://omniscia.io/
https://twitter.com/home
mailto:info@omniscia.io
https://omniscia.io/
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795

Commit Hash Date Audit Report Hash

1bb58ccd22 December 19th 2024 3c44649f80

a5e8ff5ca3 December 20th 2024 03f464c931

9fe8a4a3fc December 28th 2024 ae1ade8a7c

9fe8a4a3fc April 2nd 2025 871039c295

Token ONE Security Audit

Audit Report Revisions

We were tasked with performing an audit of the Perpetual Airdrop Project codebase and in

particular their Token ONE airdrop infrastructure.

The system implements a novel token implementation meant to support a perpetual airdrop

scheme via usage of Chainlink's v2.5 VRF system.

Over the course of the audit, we identified a significant access control flaw in the way

randomness requests are fulfilled as well as a governance manipulation attack due to improper

accounting of votes.

To note, the contract operates close to block gas limitations and should be configured securely

by the Perpetual Airdrop Project team to ensure that it cannot ever breach the block gas limit

of the network the system is deployed to.

We advise the Perpetual Airdrop Project team to closely evaluate all minor-and-above findings

identified in the report and promptly remediate them as well as consider all optimizational

exhibits identified in the report.

Audit Overview

The Perpetual Airdrop Project team iterated through all findings within the report and provided

us with a revised commit hash to evaluate all exhibits on.

We evaluated all alleviations performed by Perpetual Airdrop Project and have identified that a

single exhibit has not been adequately dealt with. We advise the Perpetual Airdrop Project

team to revisit the following exhibit: TOG-04M

Additionally, the following informational findings remain unaddressed and should be revisited:

TOG-03S , TOG-01C , TOE-01C

Finally, we observed the omission of a routine call in the ChainlinkAutomationProvider that we

advise be re-incorporated to the codebase.

Post-Audit Conclusion

https://omniscia.io/reports/perpetual-airdrop-token-one-67473216635c6b00185b2795/manual-review/TokenOneGovernor-TOG#TOG-04M
https://omniscia.io/reports/perpetual-airdrop-token-one-67473216635c6b00185b2795/static-analysis/TokenOneGovernor-TOG#TOG-03S
https://omniscia.io/reports/perpetual-airdrop-token-one-67473216635c6b00185b2795/code-style/TokenOneGovernor-TOG#TOG-01C
https://omniscia.io/reports/perpetual-airdrop-token-one-67473216635c6b00185b2795/code-style/TokenOne-TOE#TOE-01C

The Perpetual Airdrop Project team evaluated our follow-up recommendations and have

addressed all remaining exhibits in the audit report except for TOE-01C which was safely

acknowledged.

We consider all outputs of the audit report properly consumed by the Perpetual Airdrop Project

team with no outstanding remediative actions remaining.

Post-Audit Conclusion (9fe8a4a3fc)

https://omniscia.io/reports/perpetual-airdrop-token-one-67473216635c6b00185b2795/code-style/TokenOne-TOE#TOE-01C

Severity Identified Alleviated Partially Alleviated Acknowledged

1 1 0 0

18 17 0 1

4 3 0 1

3 3 0 0

3 3 0 0

During the audit, we filtered and validated a total of 9 findings utilizing static analysis

tools as well as identified a total of 20 findings during the manual review of the codebase.

We strongly recommend that any minor severity or higher findings are dealt with promptly

prior to the project's launch as they can introduce potential misbehaviours of the system as

well as exploits.

� Scope

� Compilation

� Static Analysis

� Manual Review

� Code Style

Audit Synopsis

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/scope
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/compilation
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/static-analysis
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style

Scope

The audit engagement encompassed a specific list of contracts that were present in the

commit hash of the repository that was in scope. The tables below detail certain meta-data

about the target of the security assessment and a navigation chart is present at the end that

links to the relevant findings per file.

Repository: https://github.com/perpetual-airdrop/contracts

Commit: 1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52

Language: Solidity

Network: Ethereum

Revisions: 1bb58ccd22, a5e8ff5ca3, 9fe8a4a3fc

File Total Finding(s)

contracts/CustomGovernorCounting.sol (CGC) 0

contracts/ChainlinkAutomationProvider.sol (CAP) 3

contracts/ChainlinkRandomnessProvider.sol (CRP) 5

contracts/RandomnessRouter.sol (RRR) 1

contracts/TokenOne.sol (TOE) 9

contracts/types/TokenOneTypes.sol (TOT) 0

contracts/TokenOneGovernor.sol (TOG) 11

Target

Contracts Assessed

https://github.com/perpetual-airdrop/contracts

Compilation

The project utilizes hardhat as its development pipeline tool, containing an array of tests and

scripts coded in TypeScript.

To compile the project, the compile command needs to be issued via the npx CLI tool to

hardhat :

The hardhat tool automatically selects Solidity version 0.8.20 based on the version specified

within the hardhat.config.ts file.

The project contains discrepancies with regards to the Solidity version used as the pragma

statements of the contracts are open-ended (^0.8.20).

We advise them to be locked to 0.8.20 (=0.8.20), the same version utilized for our static

analysis as well as optimizational review of the codebase.

During compilation with the hardhat pipeline, no errors were identified that relate to the

syntax or bytecode size of the contracts.

npx hardhat compile

BASH

Static Analysis

The execution of our static analysis toolkit identified 67 potential issues within the codebase

of which 54 were ruled out to be false positives or negligible findings.

The remaining 13 issues were validated and grouped and formalized into the 9 exhibits that

follow:

ID Severity Addressed Title

CAP-01S Multiple Top-Level Declarations

CRP-01S Inexistent Sanitization of Input Addresses

CRP-02S Inexistent Visibility Specifier

TOE-01S Inexistent Event Emission

TOE-02S Inexistent Sanitization of Input Address

TOG-01S Illegible Numeric Value Representation

TOG-02S Inexistent Sanitization of Input Address

TOG-03S Inexistent Visibility Specifier

TOG-04S Multiple Top-Level Declarations

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/static-analysis/ChainlinkAutomationProvider-CAP#CAP-01S
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/static-analysis/ChainlinkRandomnessProvider-CRP#CRP-01S
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/static-analysis/ChainlinkRandomnessProvider-CRP#CRP-02S
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/static-analysis/TokenOne-TOE#TOE-01S
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/static-analysis/TokenOne-TOE#TOE-02S
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/static-analysis/TokenOneGovernor-TOG#TOG-01S
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/static-analysis/TokenOneGovernor-TOG#TOG-02S
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/static-analysis/TokenOneGovernor-TOG#TOG-03S
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/static-analysis/TokenOneGovernor-TOG#TOG-04S

Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential

malfunctions and vulnerabilities in Perpetual Airdrop Project's Token ONE implementation.

As the project at hand implements a perpetual airdrop EIP-20, intricate care was put into

ensuring that the flow of funds within the system conforms to the specifications and

restrictions laid forth within the protocol's specification.

We validated that all state transitions of the system occur within sane criteria and that

all rudimentary formulas within the system execute as expected. We pinpointed multiple

significant vulnerabilities within the system which could have had severe ramifications to

its overall operation; we urge the Perpetual Airdrop Project team to evaluate and remediate the

major-severity exhibits within the audit report.

Additionally, the system was investigated for any other commonly present attack vectors such

as re-entrancy attacks, mathematical truncations, logical flaws and ERC / EIP standard

inconsistencies. The documentation of the project was satisfactory to an exemplary extent in

the form of a whitepaper, and certain discrepancies were identified and outlined as exhibits

within the audit report.

A total of 20 findings were identified over the course of the manual review of which 11

findings concerned the behaviour and security of the system. The non-security related

findings, such as optimizations, are included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

CRP-01M No-Op Function Implementation

CRP-02M Inexistent Provision of Timepoint

RRR-01M Inexistent Access Control

TOE-01M Inexistent Handling of No Reward

TOE-02M Inexistent Restriction of Initial Airdrop Configuration

https://eips.ethereum.org/
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/ChainlinkRandomnessProvider-CRP#CRP-01M
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/ChainlinkRandomnessProvider-CRP#CRP-02M
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/RandomnessRouter-RRR#RRR-01M
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/TokenOne-TOE#TOE-01M
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/TokenOne-TOE#TOE-02M

TOE-03M Inexistent Support of Past Regular Airdrop Computations

TOE-04M Insecure Usage of Current Balance

TOG-01M Inexistent Access Control

TOG-02M Inexistent Validation of Active Threshold

TOG-03M Incorrect Voting Proposal Threshold

TOG-04M Potential Quorum Manipulation

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/TokenOne-TOE#TOE-03M
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/TokenOne-TOE#TOE-04M
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/TokenOneGovernor-TOG#TOG-01M
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/TokenOneGovernor-TOG#TOG-02M
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/TokenOneGovernor-TOG#TOG-03M
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/manual-review/TokenOneGovernor-TOG#TOG-04M

Code Style

During the manual portion of the audit, we identified 9 optimizations that can be applied to

the codebase that will decrease the operational cost associated with the execution of a

particular function and generally ensure that the project complies with the latest best practices

and standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the

code should make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID Severity Addressed Title

CAP-01C Redundant Return Statement

CAP-02C Variable Mutability Specifiers (Immutable)

CRP-01C Variable Mutability Specifiers (Immutable)

TOE-01C Confusing Terminology

TOE-02C Inefficient Initialization of Indices

TOE-03C Variable Mutability Specifier (Immutable)

TOG-01C Redundant Parenthesis Statements

TOG-02C Redundant Visibility Specifier

TOG-03C Variable Mutability Specifiers (Immutable)

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style/ChainlinkAutomationProvider-CAP#CAP-01C
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style/ChainlinkAutomationProvider-CAP#CAP-02C
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style/ChainlinkRandomnessProvider-CRP#CRP-01C
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style/TokenOne-TOE#TOE-01C
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style/TokenOne-TOE#TOE-02C
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style/TokenOne-TOE#TOE-03C
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style/TokenOneGovernor-TOG#TOG-01C
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style/TokenOneGovernor-TOG#TOG-02C
https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/code-style/TokenOneGovernor-TOG#TOG-03C

ChainlinkAutomationProvider Static Analysis

Findings

Type Severity Location

Code Style ChainlinkAutomationProvider.sol:L9, L15, L42

The referenced file contains multiple top-level declarations that decrease the legibility of the

codebase.

contracts/ChainlinkAutomationProvider.sol

CAP-01S: Multiple Top-Level Declarations

Description:

Example:

interface IAutomationRegistrar {

 function registerUpkeep(

 UpkeepRegistrationParams calldata requestParams

) external returns (uint256);

}

interface IAutomationRegistry {

SOL

9

10

11

12

13

14

15

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#code-style

We advise all highlighted top-level declarations to be split into their respective code files,

avoiding unnecessary imports as well as increasing the legibility of the codebase.

All top-level declarations have been properly relocated to their dedicated files, addressing this

exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

ChainlinkRandomnessProvider Static Analysis

Findings

Type Severity Location

Input Sanitization ChainlinkRandomnessProvider.sol:L32-L43

The linked function(s) accept address arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor implementations, can cause

the contract to be permanently inoperable. These checks are advised as zero-value inputs are

a common side-effect of off-chain software related bugs.

contracts/ChainlinkRandomnessProvider.sol

CRP-01S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

constructor(

 IRandomnessConsumer _consumer,

 VrfConfig memory _vrfConfig,

 address _linkTokenAddress

) VRFConsumerBaseV2Plus(_vrfConfig.coordinatorAddress) {

 consumer = IRandomnessConsumer(_consumer);

 vrfConfig = _vrfConfig;

 LINKTOKEN = LinkTokenInterface(_linkTokenAddress);

 subscriptionId = s_vrfCoordinator.createSubscription();

SOL

32

33

34

35

36

37

38

39

40

41

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#input-sanitization

Example (Cont.):

 s_vrfCoordinator.addConsumer(subscriptionId, address(this));

}

SOL

42

43

We advise some basic sanitization to be put in place by ensuring that each address specified is

non-zero.

All input arguments of the ChainlinkRandomnessProvider::constructor function are adequately

sanitized as non-zero in the latest in-scope revision of the codebase, addressing this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/ChainlinkRandomnessProvider.sol#L32-L43

Type Severity Location

Code Style ChainlinkRandomnessProvider.sol:L18

The linked variable has no visibility specifier explicitly set.

contracts/ChainlinkRandomnessProvider.sol

CRP-02S: Inexistent Visibility Specifier

Description:

Example:

LinkTokenInterface immutable LINKTOKEN;

SOL

18

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the

current behaviour is for the compiler to assign one automatically which may deviate between

pragma versions.

The public visibility specifier has been introduced to the referenced variable, preventing

potential compilation discrepancies and addressing this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

TokenOne Static Analysis Findings

Type Severity Location

Language Specific TokenOne.sol:L83-L85

The linked function adjusts a sensitive contract variable yet does not emit an event for it.

contracts/TokenOne.sol

TOE-01S: Inexistent Event Emission

Description:

Example:

function setRandomnessProvider(address _randomnessProviderAddress) external

onlyOwner {

 randomnessProvider = IRandomnessProvider(_randomnessProviderAddress);

}

SOL

83

84

85

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#language-specific

We advise an event to be declared and correspondingly emitted to ensure off-chain processes

can properly react to this system adjustment.

The RandomnessProviderSet event was introduced to the codebase and is correspondingly

emitted in the TokenOne::setRandomnessProvider function, addressing this exhibit in full.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/TokenOne.sol#L83-L85

Type Severity Location

Input Sanitization TokenOne.sol:L83-L85

The linked function accepts an address argument yet does not properly sanitize it.

The presence of zero-value addresses, especially in constructor implementations, can cause

the contract to be permanently inoperable. These checks are advised as zero-value inputs are

a common side-effect of off-chain software related bugs.

contracts/TokenOne.sol

TOE-02S: Inexistent Sanitization of Input Address

Description:

Impact:

Example:

function setRandomnessProvider(address _randomnessProviderAddress) external

onlyOwner {

 randomnessProvider = IRandomnessProvider(_randomnessProviderAddress);

}

SOL

83

84

85

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that the address specified is

non-zero.

The input _randomnessProviderAddress address argument of the

TokenOne::setRandomnessProvider function is adequately sanitized as non-zero in the latest in-

scope revision of the codebase, addressing this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/TokenOne.sol#L83-L85

TokenOneGovernor Static Analysis Findings

Type Severity Location

Code Style TokenOneGovernor.sol:L45

The linked representation of a numeric literal is sub-optimally represented decreasing the

legibility of the codebase.

contracts/TokenOneGovernor.sol

TOG-01S: Illegible Numeric Value Representation

Description:

Example:

return 100000;

SOL

45

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#code-style

To properly illustrate the value's purpose, we advise the following guidelines to be followed. For

values meant to depict fractions with a base of 1e18 , we advise fractions to be utilized directly

(i.e. 1e17 becomes 0.1e18) as they are supported. For values meant to represent a percentage

base, we advise each value to utilize the underscore (_) separator to discern the percentage

decimal (i.e. 10000 becomes 100_00 , 300 becomes 3_00 and so on). Finally, for large numeric

values we simply advise the underscore character to be utilized again to represent them (i.e.

1000000 becomes 1_000_000).

The referenced literal is no longer present in the codebase rendering this exhibit inapplicable.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Type Severity Location

Input Sanitization TokenOneGovernor.sol:L24-L33

The linked function accepts an address argument yet does not properly sanitize it.

The presence of zero-value addresses, especially in constructor implementations, can cause

the contract to be permanently inoperable. These checks are advised as zero-value inputs are

a common side-effect of off-chain software related bugs.

contracts/TokenOneGovernor.sol

TOG-02S: Inexistent Sanitization of Input Address

Description:

Impact:

Example:

constructor(

 IVotes _tokenOne,

 string memory governorName,

 uint256 _votingPeriod,

 uint256 _activeThreshold

) Governor(governorName) GovernorVotes(_tokenOne) {

 votingPeriodInput = _votingPeriod;

 activeThreshold = _activeThreshold;

 tokenOne = ITokenOne(address(_tokenOne));

}

SOL

24

25

26

27

28

29

30

31

32

33

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#input-sanitization

We advise some basic sanitization to be put in place by ensuring that the address specified is

non-zero.

The input _tokenOne address argument of the TokenOneGovernor::constructor function is

adequately sanitized as non-zero in the latest in-scope revision of the codebase, addressing

this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/TokenOneGovernor.sol#L24-L33

Type Severity Location

Code Style TokenOneGovernor.sol:L19

The linked variable has no visibility specifier explicitly set.

contracts/TokenOneGovernor.sol

TOG-03S: Inexistent Visibility Specifier

Description:

Example:

ITokenOne tokenOne;

SOL

19

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#code-style

We advise one to be set so to avoid potential compilation discrepancies in the future as the

current behaviour is for the compiler to assign one automatically which may deviate between

pragma versions.

While the variable has been set as immutable, no visibility specifier has been introduced to it

rendering this exhibit acknowledged.

A public visibility specifier was introduced to the tokenOne variable addressing this exhibit.

Recommendation:

Alleviation (a5e8ff5ca3):

Alleviation (9fe8a4a3fc):

Type Severity Location

Code Style TokenOneGovernor.sol:L11, L15

The referenced file contains multiple top-level declarations that decrease the legibility of the

codebase.

contracts/TokenOneGovernor.sol

TOG-04S: Multiple Top-Level Declarations

Description:

Example:

interface OwnableWithAcceptInterface {

 function acceptOwnership() external;

}

contract TokenOneGovernor is Governor, GovernorVotes, CustomGovernorCounting {

SOL

11

12

13

14

15

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#code-style

We advise all highlighted top-level declarations to be split into their respective code files,

avoiding unnecessary imports as well as increasing the legibility of the codebase.

The extra top-level declaration has been properly relocated to its dedicated file, addressing

this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

ChainlinkRandomnessProvider Manual Review

Findings

Type Severity Location

Logical Fault ChainlinkRandomnessProvider.sol:L97

The ChainlinkRandomnessProvider::logTransaction function will not perform any action with the

input arguments it is supplied with.

The purpose of the function is presently unclear and does not permit a severity to be

accurately assessed.

contracts/ChainlinkRandomnessProvider.sol

CRP-01M: No-Op Function Implementation

Description:

Impact:

Example:

function logTransaction(address from, address to, uint256 amount, address token)

external { }

SOL

97

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#logical-fault
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/ChainlinkRandomnessProvider.sol#L97-L97

We advise either an event to be emitted, or the function arguments to become unnamed so as

to indicate that the function exists for compatibility purposes.

The Perpetual Airdrop Project team evaluated this exhibit and clarified that the

ChainlinkRandomnessProvider::logTransaction function selector is expected to be invoke-able

on the contract as part of an out-of-scope governance mechanism.

As such, we consider this exhibit to be addressed via the commenting out of redundant

arguments as the function itself should remain invoke-able.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/ChainlinkRandomnessProvider.sol#L97-L97

Type Severity Location

Language Specific ChainlinkRandomnessProvider.sol:L71

The ChainlinkRandomnessProvider::fulfillRandomWords will eventually invoke the

TokenOne::fulfillRegularAirdrop function with a timepoint of 0 which is insecure as the

contract will resort to current-balance measurements.

The regular airdrop mechanism can be presently manipulated via spot balance fluctuations,

such as by acquiring a flash-loan of Token ONE balance via an AMM contract.

contracts/ChainlinkRandomnessProvider.sol

CRP-02M: Inexistent Provision of Timepoint

Description:

Impact:

Example:

/**

 * @dev Callback function used by VRF Coordinator to return the random words.

 */

function fulfillRandomWords(uint256 requestId, uint256[] calldata randomWords)

internal override {

 consumer.fulfillRandomWords(requestId, randomWords, 0);

}

SOL

67

68

69

70

71

72

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#language-specific
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/ChainlinkRandomnessProvider.sol#L70-L72
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOne.sol#L261-L315

We advise the code to always supply a proper timepoint, potentially by utilizing the timepoint

recorded when the airdrop period began.

The code of the TokenOne::fulfillRegularAirdrop function was updated to default the value of

the timepoint to the state.requestTimestamp of the RegularAirdropState , ensuring that active

balances are not utilized during airdrops and thus addressing this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/TokenOne.sol#L261-L315

RandomnessRouter Manual Review Findings

Type Severity Location

Logical Fault RandomnessRouter.sol:L36-L42

The RandomnessRouter::fulfillRandomWords function lacks access control permitting anyone to

fulfil a randomness request and thus bypass critical security assumptions about the

randomWords yielded by the contract.

A randomness request can be fulfilled with deterministic data by anyone, compromising a

critical security assumption in the system.

contracts/RandomnessRouter.sol

RRR-01M: Inexistent Access Control

Description:

Impact:

Example:

function fulfillRandomWords(uint256 requestId, uint256[] calldata randomWords,

uint256 timepoint) external {

 requestIdToConsumer[requestId].fulfillRandomWords(

 requestId,

 randomWords,

 timepoint

);

}

SOL

36

37

38

39

40

41

42

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#logical-fault
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/RandomnessRouter.sol#L36-L42

We advise proper access control to be imposed ensuring that the function is solely callable by

the currently-active randomnessProvider .

Access control was properly introduced ensuring the function's caller is the randomnessProvider

, addressing this exhibit in full.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

TokenOne Manual Review Findings

Type Severity Location

Logical Fault TokenOne.sol:L284, L294, L296, L298, L300-L305

The TokenOne::fulfillRegularAirdrop function will misbehave if it is unable to find an eligible

winner based on the timepoint of the airdrop as it will increase the totalBalance of the

RegularAirdropState incorrectly and will assign winner balances to the zero-address.

An airdrop might be won by the zero-address which is incorrect and contradicts the code's

intentions.

contracts/TokenOne.sol

TOE-01M: Inexistent Handling of No Reward

Description:

Impact:

Example:

for (uint256 i = 0; i < numRequested; i++) {

 uint256 randomIndex = randomWords[i] % numParticipants;

 address winner = eligibilityList.at(randomIndex);

 if (timepoint != 0) {

 uint256 attempts = 0;

 while (getPastVotes(winner, timepoint) <

regularAirdropConfig.eligibilityThreshold) {

 // Prevent infinite loop

 if (attempts >= 10) {

 winner = address(0);

SOL

275

276

277

278

279

280

281

282

283

284

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#logical-fault
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOne.sol#L261-L315

Example (Cont.):

 break;

 }

 // Get new random index by hashing the previous one

 randomIndex = uint256(keccak256(abi.encode(randomIndex))) %

numParticipants;

 winner = eligibilityList.at(randomIndex);

 attempts++;

 }

 }

 uint256 balance = timepoint == 0 ? balanceOf(winner) : getPastVotes(winner,

timepoint);

 state.totalBalance += balance;

 EnumerableMap.AddressToUintMap storage winnerBalances =

regularAirdropWinnerBalances[index];

 if (winnerBalances.contains(winner)) {

 uint256 currentBalance = winnerBalances.get(winner);

 winnerBalances.set(winner, currentBalance + balance);

 } else {

 winnerBalances.set(winner, balance);

 }

}

SOL

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

We advise the loop to continue if the winner is the zero-address after a timepoint lookup,

ensuring improper reward entries are not created.

The code was updated to skip an airdrop draw if no winner was found within the allocated

attempts, alleviating this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Type Severity Location

Logical Fault TokenOne.sol:L69, L70

The Token ONE whitepaper denotes that the initial airdrop is composed of 10 winners and a

total of 100_000_000e18 tokens distributed, however, this configuration is not observed in the

contract.

The configuration of the TokenOne contract is arbitrary and might not match its whitepaper

specification.

contracts/TokenOne.sol

TOE-02M: Inexistent Restriction of Initial Airdrop

Configuration

Description:

Impact:

Example:

constructor(

 string memory tokenName,

 string memory tokenSymbol,

 InitialAirdropConfig memory _initialAirdropConfig,

 RegularAirdropConfig memory _regularAirdropConfig,

 uint256 _governanceThreshold

) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) Ownable(msg.sender) {

 require(_initialAirdropConfig.numWinners > 0, "Invalid winners count");

 require(_initialAirdropConfig.amount > 0, "Invalid airdrop amount");

 require(_initialAirdropConfig.participants.length > 0, "No participants");

SOL

62

63

64

65

66

67

68

69

70

71

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#logical-fault

We advise the configuration to be made strict, either by necessitating the configuration via

equality case require clauses or by configuring it directly, ensuring that the numWinners are 10

and that the amount of each winner is 10_000_000e18 units.

The Perpetual Airdrop Project team evaluated this exhibit and opted to not enforced a fixed

configuration as they wish their deployment to remain flexible.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Type Severity Location

Logical Fault TokenOne.sol:L317

The TokenOne::computeRegularAirdropEarnings function does not support the computation of

elapsed regular airdrops, resulting in computed airdrops that have not yet been distributed to

not be activate-able.

The system does not permit any airdrop index to be computed, causing airdrops which have

been requested and properly fulfilled to potentially not be distributed.

contracts/TokenOne.sol

TOE-03M: Inexistent Support of Past Regular Airdrop

Computations

Description:

Impact:

Example:

function computeRegularAirdropEarnings(uint16 batchSize) external {

 uint32 index = regularAirdropCurrentIndex();

SOL

317

318

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#logical-fault
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOne.sol#L317-L354

We advise the code to introduce a secondary TokenOne::computeRegularAirdropEarnings

function that permits the index of the airdrop to be supplied as an argument, ensuring past

regular airdrops that were potentially requested close to their index period's conclusion to be

properly processed.

The code was updated to allow for an additional index argument, ensuring that elapsed

regular airdrops can still be computed and thus claimed.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOne.sol#L317-L354

Type Severity Location

Logical Fault TokenOne.sol:L294

A user is able to manipulate the fulfilment of a regular airdrop with a timepoint of 0 (regular

functionality of the system) by acquiring a substantial portion of funds in the same block the

randomness request is fulfilled and refunding them right after the request is fulfilled.

A regular airdrop can be manipulated via MEV by sandwiching the airdrop's fulfillment with a

transaction that acquires a substantial portion of Token ONE tokens before the request is

fulfilled and refunds them right after.

contracts/TokenOne.sol

TOE-04M: Insecure Usage of Current Balance

Description:

Impact:

Example:

if (timepoint != 0) {

 uint256 attempts = 0;

 while (getPastVotes(winner, timepoint) <

regularAirdropConfig.eligibilityThreshold) {

 // Prevent infinite loop

 if (attempts >= 10) {

 winner = address(0);

 break;

 }

 // Get new random index by hashing the previous one

SOL

279

280

281

282

283

284

285

286

287

288

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#logical-fault

Example (Cont.):

 randomIndex = uint256(keccak256(abi.encode(randomIndex))) %

numParticipants;

 winner = eligibilityList.at(randomIndex);

 attempts++;

 }

}

uint256 balance = timepoint == 0 ? balanceOf(winner) : getPastVotes(winner,

timepoint);

SOL

289

290

291

292

293

294

We advise the code to prevent a timepoint of 0 from being valid, and to always utilize a

timepoint in the past that increases the airdrop mechanism's resilience to manipulation

attacks.

Spot balance evaluations have been omitted from the codebase ensuring a non-zero timepoint

is defined or, in the case it has not been defined, that the requestTimestamp of the

RegularAirdropStates entry is utilized thereby addressing this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

TokenOneGovernor Manual Review Findings

Type Severity Location

Logical Fault TokenOneGovernor.sol:L74-L76

The TokenOneGovernor::acceptOwnership function permits anyone to accept ownership of

another contract on behalf of the TokenOneGovernor which we consider ill-advised as the

function signature might clash with another and generally represents a call to an arbitrary

untrusted address.

The TokenOneGovernor::acceptOwnership function does not impose any access control, causing

potential proposals that execute it to fail if ownership is accepted prior to the proposal's

execution.

contracts/TokenOneGovernor.sol

TOG-01M: Inexistent Access Control

Description:

Impact:

Example:

function acceptOwnership(OwnableWithAcceptInterface ownableContract) external {

 ownableContract.acceptOwnership();

}

SOL

74

75

76

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#logical-fault
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOneGovernor.sol#L12-L15
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOneGovernor.sol#L12-L15

We advise ownership acceptance to be restricted via the Governor::onlyGovernance modifier,

ensuring that ownership acceptances are properly authorized.

The function was updated to apply the Ownable::onlyOwner modifier instead, ensuring some

form of access control is imposed and thus addressing this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Type Severity Location

Logical Fault TokenOneGovernor.sol:L31

The configured active threshold should be validated as being a value that is equal to or lower

than the TokenOneGovernor::proposalThreshold so as to ensure the proposal threshold is

properly upheld.

Should the activeThreshold be configured to a value higher than the

TokenOneGovernor::proposalThreshold , a proposal will not be able to be created with the

threshold defined which we consider incorrect.

contracts/TokenOneGovernor.sol

TOG-02M: Inexistent Validation of Active Threshold

Description:

Impact:

Example:

constructor(

 IVotes _tokenOne,

 string memory governorName,

 uint256 _votingPeriod,

 uint256 _activeThreshold

) Governor(governorName) GovernorVotes(_tokenOne) {

 votingPeriodInput = _votingPeriod;

 activeThreshold = _activeThreshold;

 tokenOne = ITokenOne(address(_tokenOne));

}

SOL

24

25

26

27

28

29

30

31

32

33

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#logical-fault
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOneGovernor.sol#L44-L46
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOneGovernor.sol#L44-L46

Example (Cont.):

function votingPeriod() public view virtual override returns (uint256) {

 return votingPeriodInput;

}

function votingDelay() public pure virtual override returns (uint256) {

 return 0;

}

function proposalThreshold() public pure override returns (uint256) {

 return 100000;

}

function _getVotes(address account, uint256 timepoint, bytes memory params)

internal view override(Governor, GovernorVotes) returns (uint256) {

 uint256 votes = super._getVotes(account, timepoint, params);

 return (votes >= activeThreshold) ? votes : 0;

}

SOL

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

We advise this restriction to be imposed, ensuring that proposals can accurately be created

with the threshold balance outlined by the contract.

The thresholds in the system are now validated as advised, alleviating this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Type Severity Location

Logical Fault TokenOneGovernor.sol:L45

The TokenOneGovernor::proposalThreshold does not match the one that the Perpetual Airdrop

Project team desires as it represents 100_000 units rather than 100_000e18 units of the Token

ONE token which possesses 18 decimal places.

The current proposal threshold does not match the one defined in the Token ONE whitepaper,

permitting the governor to be spammed with incorrect requests.

contracts/TokenOneGovernor.sol

TOG-03M: Incorrect Voting Proposal Threshold

Description:

Impact:

Example:

function proposalThreshold() public pure override returns (uint256) {

 return 100000;

}

SOL

44

45

46

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#logical-fault
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOneGovernor.sol#L44-L46

We advise the threshold to be increased accordingly, ensuring that the governance's proposal

list cannot be polluted trivially with malicious proposals.

The proposal threshold is now defined by the contract's deployer which we consider that the

Perpetual Airdrop Project team will appropriately configure, rendering this exhibit addressed.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Type Severity Location

Logical Fault TokenOneGovernor.sol:L65

The TokenOneGovernor::propose function contains a flaw in the way it tracks proposal quorums.

Specifically, it will utilize the currently-active ITokenOne::totalVotes value which represents the

actively vote-able balance at the time it is queried.

The Governor implementation will permit proposals to be voted on with a balance right

before the time the proposal is created, causing an inconsistency between the sum of the

total vote-able balances and the actual quorum recorded in the contract.

This quorum can be manipulated downward maliciously by transferring one's balance right

before creating a proposal thereby reducing it by the amount the user would vote on the

proposal.

The quorum of a particular TokenOneGovernor proposal can be manipulated downward

effectively compromising the governance process.

contracts/TokenOneGovernor.sol

TOG-04M: Potential Quorum Manipulation

Description:

Impact:

Example:

/**

 * @dev Override to capture the total supply at the time of the proposal

creation.

 */

function propose(

 address[] memory targets,

 uint256[] memory values,

 bytes[] memory calldatas,

 string memory description

) public override(Governor) returns (uint256) {

 uint256 proposalId = super.propose(targets, values, calldatas, description);

SOL

53

54

55

56

57

58

59

60

61

62

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#logical-fault
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOneGovernor.sol#L56-L68

Example (Cont.):

 // Store 50% of the total voting power at the time of proposal creation

 proposalQuorums[proposalId] = (tokenOne.totalVotes()) / 2;

 return proposalId;

}

SOL

63

64

65

66

67

68

We advise the overall approach to be refactored, utilizing a historical ITokenOne::totalVotes

accounting system that accurately depicts the total votes right before the current block.

To achieve this, a simple approach would be to finalize any ITokenOne::totalVotes changes in

the next block by updating the function to be mutable and introducing two new variables to

track pending changes to the sum.

While the system was updated to utilize a previousBlockTotalVotes mechanism, it is still

insufficient as the value will only be updated on the first transaction of a new block. As such, it

can still contain an inaccurate value that can be manipulated depending on whether it satisfies

the proposer's intentions.

We advise our original recommendation to be applied, utilizing a historical total supply tracking

mechanism.

The code of the TokenOne implementation was updated to support a historical accounting

system of past total votes, permitting the TokenOneGovernor to integrate it and thus alleviate

this exhibit in full.

Recommendation:

Alleviation (a5e8ff5ca3):

Alleviation (9fe8a4a3fc):

ChainlinkAutomationProvider Code Style

Findings

Type Severity Location

Code Style ChainlinkAutomationProvider.sol:L167

The referenced return statement is redundant as the function will automatically conclude at

that point.

contracts/ChainlinkAutomationProvider.sol

CAP-01C: Redundant Return Statement

Description:

Example:

/**

 * @dev Performs the upkeep actions based on performData.

 */

function performUpkeep(bytes calldata /* performData */) external override {

 fundUpkeep();

 tokenContract.randomnessProvider().routine();

 // Compute initial airdrop earnings

 if (tokenContract.isReadyToComputeInitial()) {

 tokenContract.computeInitialAirdropEarnings();

SOL

139

140

141

142

143

144

145

146

147

148

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#code-style

Example (Cont.):

 return;

 }

 // Request regular airdrop earnings

 if (tokenContract.isReadyToRequestRegular()) {

 tokenContract.requestRegularAirdrop();

 return;

 }

 // Compute regular airdrop earnings

 if (tokenContract.isReadyToComputeRegular()) {

 tokenContract.computeRegularAirdropEarnings(computeBatchSize);

 return;

 }

 // Distribute earnings

 if (tokenContract.hasPendingEarnings()) {

 tokenContract.distributeEarnings(distributionBatchSize);

 return;

 }

}

SOL

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

We advise it to be omitted, reducing the syntactic sugar of the codebase.

The code was refactored to accommodate for multiple airdropCoordinators and thus operates

a loop that requires the return statement to be present, rendering this exhibit nullified.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Type Severity Location

Gas Optimization

ChainlinkAutomationProvider.sol:

• I-1: L53

• I-2: L55

• I-3: L56

The linked variables are assigned to only once during the contract's constructor .

contracts/ChainlinkAutomationProvider.sol

CAP-02C: Variable Mutability Specifiers (Immutable)

Description:

Example:

constructor(

 address _tokenContract,

 address _linkTokenAddress,

 AutomationConfig memory _automationConfig,

 uint16 _computeBatchSize,

 uint16 _distributionBatchSize

) {

 LINKTOKEN = LinkTokenInterface(_linkTokenAddress);

 automationConfig = _automationConfig;

SOL

60

61

62

63

64

65

66

67

68

69

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#gas-optimization

Example (Cont.):

 automationRegistrar =

IAutomationRegistrar(_automationConfig.registrarAddress);

 automationRegistry = IAutomationRegistry(_automationConfig.registryAddress);

 tokenContract = ITokenOne(_tokenContract);

 computeBatchSize = _computeBatchSize;

 distributionBatchSize = _distributionBatchSize;

}

SOL

70

71

72

73

74

75

76

77

We advise them to be set as immutable greatly optimizing their read-access gas cost.

The referenced arguments were all updated to dynamic arrays assigned during the contract's

ChainlinkAutomationProvider::constructor , rendering the optimization no longer applicable.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/ChainlinkAutomationProvider.sol#L60-L77

ChainlinkRandomnessProvider Code Style

Findings

Type Severity Location

Gas Optimization

ChainlinkRandomnessProvider.sol:

• I-1: L24

• I-2: L27

The linked variables are assigned to only once during the contract's constructor .

contracts/ChainlinkRandomnessProvider.sol

CRP-01C: Variable Mutability Specifiers (Immutable)

Description:

Example:

// VRF subscription ID for the contract

uint256 public subscriptionId;

// Consumer

IRandomnessConsumer public consumer;

/**

 * @dev Constructor initializes the contract with the necessary configurations

and sets up the VRF subscription.

 */

constructor(

SOL

23

24

25

26

27

28

29

30

31

32

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#gas-optimization

Example (Cont.):

 IRandomnessConsumer _consumer,

 VrfConfig memory _vrfConfig,

 address _linkTokenAddress

) VRFConsumerBaseV2Plus(_vrfConfig.coordinatorAddress) {

 consumer = IRandomnessConsumer(_consumer);

 vrfConfig = _vrfConfig;

 LINKTOKEN = LinkTokenInterface(_linkTokenAddress);

 subscriptionId = s_vrfCoordinator.createSubscription();

 s_vrfCoordinator.addConsumer(subscriptionId, address(this));

}

SOL

33

34

35

36

37

38

39

40

41

42

43

We advise them to be set as immutable greatly optimizing their read-access gas cost.

The consumer , and subscriptionId contract-level variables of the contract have been set as

immutable , optimizing their read-access gas cost significantly.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

TokenOne Code Style Findings

Type Severity Location

Code Style TokenOne.sol:L40

The IRandomnessProvider is actually a RandomnessRouter implementation that exposes functions

to interact with randomness providers.

contracts/TokenOne.sol

TOE-01C: Confusing Terminology

Description:

Example:

IRandomnessProvider public randomnessProvider;

SOL

40

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#code-style

We advise this ambiguity in the codebase to be addressed by renaming relevant contracts to

more concise names (i.e. IRandomnessProvider -> IRandomnessRouter).

The Perpetual Airdrop Project team evaluated this exhibit but opted to acknowledge it in the

current iteration of the codebase.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Type Severity Location

Gas Optimization TokenOne.sol:L198-L201

The referenced loop is inefficient as it will redundantly iterate through all participants of the

initial airdrop to initialize their indices.

contracts/TokenOne.sol

TOE-02C: Inefficient Initialization of Indices

Description:

Example:

uint256[] memory available = new uint256[](numParticipants);

// Initialize available indices

for (uint256 i = 0; i < numParticipants; i++) {

 available[i] = i;

}

SOL

196

197

198

199

200

201

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#gas-optimization

We advise the code to simply assume that a zero-value available entry indicates a participant

whose position has not been swapped, and a non-zero entry indicates the next index that

should be used for disbursing rewards.

This process will significantly optimize the gas cost of the function.

The array initialized was updated to participants and is optimally initialized to the

participants of the initialAirdropConfig , addressing this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Type Severity Location

Gas Optimization TokenOne.sol:L44

The linked variable is assigned to only once during the contract's constructor .

contracts/TokenOne.sol

TOE-03C: Variable Mutability Specifier (Immutable)

Description:

Example:

constructor(

 string memory tokenName,

 string memory tokenSymbol,

 InitialAirdropConfig memory _initialAirdropConfig,

 RegularAirdropConfig memory _regularAirdropConfig,

 uint256 _governanceThreshold

) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) Ownable(msg.sender) {

 require(_initialAirdropConfig.numWinners > 0, "Invalid winners count");

 require(_initialAirdropConfig.amount > 0, "Invalid airdrop amount");

 require(_initialAirdropConfig.participants.length > 0, "No participants");

SOL

62

63

64

65

66

67

68

69

70

71

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#gas-optimization

Example (Cont.):

 require(_regularAirdropConfig.amount > 0, "Invalid regular airdrop amount");

 require(_regularAirdropConfig.numWinners > 0, "Invalid regular winners

count");

 require(_regularAirdropConfig.airdropTimeInterval > 0, "Invalid airdrop

interval");

 require(_regularAirdropConfig.windowDuration <=

_regularAirdropConfig.airdropTimeInterval, "Invalid window duration");

 initialAirdropConfig = _initialAirdropConfig;

 regularAirdropConfig = _regularAirdropConfig;

 governanceThreshold = _governanceThreshold;

}

SOL

72

73

74

75

76

77

78

79

80

81

We advise it to be set as immutable greatly optimizing its read-access gas cost.

The governanceThreshold contract-level variable of the contract has been set as immutable ,

optimizing its read-access gas cost significantly.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

TokenOneGovernor Code Style Findings

Type Severity Location

Code Style TokenOneGovernor.sol:L50, L65

The referenced statements are redundantly wrapped in parenthesis' (()).

contracts/TokenOneGovernor.sol

TOG-01C: Redundant Parenthesis Statements

Description:

Example:

return (votes >= activeThreshold) ? votes : 0;

SOL

50

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#code-style

We advise them to be safely omitted, increasing the legibility of the codebase.

The redundant parenthesis remain in the codebase, rendering this exhibit acknowledged.

Both redundant parenthesis statements have been omitted, increasing the code's legibility.

Recommendation:

Alleviation (a5e8ff5ca3):

Alleviation (9fe8a4a3fc):

Type Severity Location

Gas Optimization TokenOneGovernor.sol:L16

The referenced variable is set as public yet is exposed via the TokenOneGovernor::votingPeriod

function.

contracts/TokenOneGovernor.sol

TOG-02C: Redundant Visibility Specifier

Description:

Example:

uint256 public votingPeriodInput;

uint256 public activeThreshold;

ITokenOne tokenOne;

// Mapping to store the quorum threshold at the time of the proposal

mapping(uint256 => uint256) private proposalQuorums;

constructor(

 IVotes _tokenOne,

SOL

16

17

18

19

20

21

22

23

24

25

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#gas-optimization
https://github.com/perpetual-airdrop/contracts/blob/1bb58ccd224b90e7fb2fee22aff4d981ddfb9a52/contracts/TokenOneGovernor.sol#L36-L38

Example (Cont.):

 string memory governorName,

 uint256 _votingPeriod,

 uint256 _activeThreshold

) Governor(governorName) GovernorVotes(_tokenOne) {

 votingPeriodInput = _votingPeriod;

 activeThreshold = _activeThreshold;

 tokenOne = ITokenOne(address(_tokenOne));

}

function votingPeriod() public view virtual override returns (uint256) {

 return votingPeriodInput;

}

SOL

26

27

28

29

30

31

32

33

34

35

36

37

38

We advise its public visibility specifier to be replaced by internal or private , ensuring a

getter function is not redundantly generated for it.

The variable has been set to private as advised, addressing this exhibit.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Type Severity Location

Gas Optimization

TokenOneGovernor.sol:

• I-1: L16

• I-2: L17

• I-3: L19

The linked variables are assigned to only once during the contract's constructor .

contracts/TokenOneGovernor.sol

TOG-03C: Variable Mutability Specifiers (Immutable)

Description:

Example:

uint256 public votingPeriodInput;

uint256 public activeThreshold;

ITokenOne tokenOne;

// Mapping to store the quorum threshold at the time of the proposal

mapping(uint256 => uint256) private proposalQuorums;

constructor(

 IVotes _tokenOne,

SOL

16

17

18

19

20

21

22

23

24

25

https://omniscia.io/reports/perpetual-airdrop-project-token-one-67473216635c6b00185b2795/appendix/finding-types#gas-optimization

Example (Cont.):

 string memory governorName,

 uint256 _votingPeriod,

 uint256 _activeThreshold

) Governor(governorName) GovernorVotes(_tokenOne) {

 votingPeriodInput = _votingPeriod;

 activeThreshold = _activeThreshold;

 tokenOne = ITokenOne(address(_tokenOne));

}

SOL

26

27

28

29

30

31

32

33

We advise them to be set as immutable greatly optimizing their read-access gas cost.

The votingPeriodInput , voteThreshold , and tokenOne contract-level variables of the contract

have been set as immutable , optimizing their read-access gas cost significantly.

Recommendation:

Alleviation (a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c):

Finding Types

A description of each finding type included in the report can be found below and is linked by

each respective finding. A full list of finding types Omniscia has defined will be viewable at the

central audit methodology we will publish soon.

As there are no inherent guarantees to the inputs a function accepts, a set of guards should

always be in place to sanitize the values passed in to a particular function.

These types of issues arise when a linked code segment may not behave as expected, either

due to mistyped code, convoluted if blocks, overlapping functions / variable names and other

ambiguous statements.

Language specific issues arise from certain peculiarities that the Circom language boasts that

discerns it from other conventional programming languages.

Circom defaults to using the BN128 scalar field (a 254-bit prime field), but it also supports

BSL12-381 (which has a 255-bit scalar field) and Goldilocks (with a 64-bit scalar field).

However, since there are no constants denoting either the prime or the prime size in bits

available in the Circom language, some Circomlib templates like Sign (which returns the sign

of the input signal), and AliasCheck (used by the strict versions of Num2Bits and Bits2Num),

hardcode either the BN128 prime size or some other constant related to BN128. Using these

circuits with a custom prime may thus lead to unexpected results and should be avoided.

In these types of findings, we identify whether a project conforms to a particular naming

convention and whether that convention is consistent within the codebase and legible. In case

of inconsistencies, we point them out under this category. Additionally, variable shadowing falls

under this category as well which is identified when a local-level variable contains the same

name as a toplevel variable in the circuit.

Input Sanitization

Indeterminate Code

Language Specific

Curve Specific

Code Style

Mathematical Operations

This category is used when a mathematical issue is identified. This implies an issue with the

implementation of a calculation compared to the specifications.

This category is a bit broad and is meant to cover implementations that contain flaws in the

way they are implemented, either due to unimplemented functionality, unaccounted-for edge

cases or similar extraordinary scenarios.

This category is used when information that is meant to be kept private is made public in some

way.

Under-constrained signals are one of the most common issues in zero-knowledge circuits.

Issues with proof generation fall under this category.

Logical Fault

Privacy Concern

Proof Concern

Severity Definition

In the ever-evolving world of blockchain technology, vulnerabilities continue to take on new

forms and arise as more innovative projects manifest, new blockchain-level features are

introduced, and novel layer-2 solutions are launched. When performing security reviews, we

are tasked with classifying the various types of vulnerabilities we identify into subcategories to

better aid our readers in understanding their impact.

Within this page, we will clarify what each severity level stands for and our approach in

categorizing the findings we pinpoint in our audits. To note, all severity assessments are

performed as if the contract's logic cannot be upgraded regardless of the underlying

implementation.

There are five distinct severity levels within our reports; unknown , informational , minor ,

medium , and major . A TL;DR overview table can be found below as well as a dedicated chapter

to each severity level:

Impact

(None)

Impact

(Low)

Impact

(Moderate)

Impact

(High)

Likelihood (None)

Likelihood (Low)

Likelihood (Moderate)

Likelihood (High)

The unknown severity level is reserved for misbehaviors we observe in the codebase that

cannot be quantified using the above metrics. Examples of such vulnerabilities include

potentially desirable system behavior that is undocumented, reliance on external

dependencies that are out-of-scope but could result in some form of vulnerability arising, use

of external out-of-scope contracts that appears incorrect but cannot be pinpointed, and other

such vulnerabilities.

In general, unknown severity level vulnerabilities require follow-up information by the project

being audited and are either adjusted in severity (if valid), or marked as nullified (if invalid).

Additionally, the unknown severity level is sometimes assigned to centralization issues that

cannot be assessed in likelihood due to their exploitation being tied to the honesty of the

project's team.

The informational severity level is dedicated to findings that do not affect the code

functionally and tend to be stylistic or optimizational in nature. Certain edge cases are also set

under informational vulnerabilities, such as overflow operations that will not manifest in the

lifetime of the contract but should be guarded against as a best practice, to give an example.

Severity Levels

Unknown Severity

Informational Severity

The minor severity level is meant for vulnerabilities that require functional changes in the code

but tend to either have little impact or be unlikely to be recreated in a production environment.

These findings can be acknowledged except for findings with a moderate impact but low

likelihood which must be alleviated.

The medium severity level is assigned to vulnerabilities that must be alleviated and have an

observable impact on the overall project. These findings can only be acknowdged if the project

deems them desirable behavior and we disagree with their point-of-view, instead urging them

to reconsider their stance while marking the exhibit as acknowledged given that the project

has ultimate say as to what vulnerabilities they end up patching in their system.

The major severity level is the maximum that can be specified for a finding and indicates a

significant flaw in the code that must be alleviated.

Minor Severity

Medium Severity

Major Severity

As the preface chapter specifies, the blockchain space is constantly reinventing itself meaning

that new vulnerabilities take place and our understanding of what security means differs year-

to-year.

In order to reliably assess the likelihood and impact of a particular vulnerability, we instead

apply an abstract measurement of a vulnerability's impact, duration the impact is applied for,

and probability that the vulnerability would be exploited in a production environment.

Our proposed definitions are inspired by multiple sources in the security community and are as

follows:

Impact (High): A core invariant of the protocol can be broken for an extended duration.

Impact (Moderate): A non-core invariant of the protocol can be broken for an extended

duration or at scale, or an otherwise major-severity issue is reduced due to hypotheticals or

external factors affecting likelihood.

Impact (Low): A non-core invariant of the protocol can be broken with reduced likelihood or

impact.

Impact (None): A code or documentation flaw whose impact does not achieve low severity, or

an issue without theoretical impact; a valuable best-practice

Likelihood (High): A flaw in the code that can be exploited trivially and is ever-present.

Likelihood (Moderate): A flaw in the code that requires some external factors to be exploited

that are likely to manifest in practice.

Likelihood (Low): A flaw in the code that requires multiple external factors to be exploited

that may manifest in practice but would be unlikely to do so.

Likelihood (None): A flaw in the code that requires external factors proven to be impossible in

a production environment, either due to mathematical constraints, operational constraints,

or system-related factors (i.e. EIP-20 tokens not being re-entrant).

Likelihood & Impact Assessment

Disclaimer

The following disclaimer applies to all versions of the audit report produced (preliminary /

public / private) and is in effect for all past, current, and future audit reports that are produced

and hosted under Omniscia:

Omniscia ("Omniscia") has conducted an independent security review to verify the integrity of

and highlight any vulnerabilities, bugs or errors, intentional or unintentional, that may be

present in the codebase that were provided for the scope of this Engagement.

Blockchain technology and the cryptographic assets it supports are nascent technologies. This

makes them extremely volatile assets. Any assessment report obtained on such volatile and

nascent assets may include unpredictable results which may lead to positive or negative

outcomes.

In some cases, services provided may be reliant on a variety of third parties. This security

review does not constitute endorsement, agreement or acceptance for the Project and

technology that was reviewed. Users relying on this security review should not consider this as

having any merit for financial advice or technological due diligence in any shape, form or

nature.

The veracity and accuracy of the findings presented in this report relate solely to the

proficiency, competence, aptitude and discretion of our auditors. Omniscia and its employees

make no guarantees, nor assurance that the contracts are free of exploits, bugs,

vulnerabilities, deprecation of technologies or any system / economical / mathematical

malfunction.

This audit report shall not be printed, saved, disclosed nor transmitted to any persons or

parties on any objective, goal or justification without due written assent, acquiescence or

approval by Omniscia.

All the information/opinions/suggestions provided in this report does not constitute financial or

investment advice, nor should it be used to signal that any person reading this report should

invest their funds without sufficient individual due diligence regardless of the findings

presented in this report.

IMPORTANT TERMS & CONDITIONS REGARDING OUR

SECURITY AUDITS/REVIEWS/REPORTS AND ALL

PUBLIC/PRIVATE CONTENT/DELIVERABLES

Information in this report is provided 'as is'. Omniscia is under no covenant to the

completeness, accuracy or solidity of the contracts reviewed. Omniscia's goal is to help reduce

the attack vectors/surface and the high level of variance associated with utilizing new and

consistently changing technologies.

Omniscia in no way claims any guarantee, warranty or assurance of security or functionality of

the technology that was in scope for this security review.

In no event will Omniscia, its partners, employees, agents or any parties related to the

design/creation of this security review be ever liable to any parties for, or lack thereof,

decisions and/or actions with regards to the information provided in this security review.

Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies

are not standardized, highly prone to malfunction and extremely speculative by nature. No due

diligence and/or safeguards may be insufficient and users should exercise maximum caution

when participating and/or investing in this nascent industry.

The preparation of this security review has made all reasonable attempts to provide clear and

actionable recommendations to the Project team (the “client”) with respect to the rectification,

amendment and/or revision of any highlighted issues, vulnerabilities or exploits within the

contracts in scope for this engagement.

It is the sole responsibility of the Project team to provide adequate levels of test and perform

the necessary checks to ensure that the contracts are functioning as intended, and more

specifically to ensure that the functions contained within the contracts in scope have the

desired intended effects, functionalities and outcomes, as documented by the Project team.

All services, the security reports, discussions, work product, attack vectors description or any

other materials, products or results of this security review engagement is provided "as is" and

"as available" and with all faults, uncertainty and defects without warranty or guarantee of any

kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any

inaccuracies of content, suggestions, materials or for any loss, delay, damage of any kind

which arose as a result of this engagement/security review.

Omniscia will assume no liability or responsibility for any personal injury, property damage, of

any kind whatsoever that resulted in this engagement and the customer having access to or

use of the products, engineers, services, security report, or any other other materials.

For avoidance of doubt, this report, its content, access, and/or usage thereof, including any

associated services or materials, shall not be considered or relied upon as any form of

financial, investment, tax, legal, regulatory, or any other type of advice.

