
April 2, 2025

Perpetual Airdrop Project

Original Perpetual Airdrop Tokens

perpetual-airdrop-project-original-perpetual-airdrop-tokens

mailto:info@omniscia.io
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3


Online report:  perpetual-airdrop-project-original-perpetual-airdrop-tokens

https://omniscia.io/
https://twitter.com/home
mailto:info@omniscia.io
https://omniscia.io/
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3


Commit Hash Date Audit Report Hash

a5e8ff5ca3 December 20th 2024 f01ce762d0

61de1a0b9a December 28th 2024 4d8a2b2b70

9fe8a4a3fc December 28th 2024 7143ad38fb

9fe8a4a3fc April 2nd 2025 892304fa35

Original Perpetual Airdrop Tokens Security

Audit

Audit Report Revisions



We were tasked with performing an audit of the Perpetual Airdrop Project codebase and in

particular their Original Perpetual Airdrop Tokens module.

The system represents a multi-token airdrop system that utilizes historical balances as well as

on-transfer hooks to track eligibility.

Over the course of the audit, we identified that several misconfigurations are permitted albeit

via the deployers of the system which are expected to apply proper sanitization to their

configurations.

We advise the Perpetual Airdrop Project team to closely evaluate all minor-and-above findings

identified in the report and promptly remediate them as well as consider all optimizational

exhibits identified in the report.

Audit Overview



The Perpetual Airdrop Project team iterated through all findings within the report and provided

us with a revised commit hash to evaluate all exhibits on.

We evaluated all alleviations performed by Perpetual Airdrop Project and have identified that

certain exhibits have not been adequately dealt with. We advise the Perpetual Airdrop Project

team to revisit the following exhibits: PAC-01M , PAC-03C

Post-Audit Conclusion

https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/manual-review/PerpetualAirdropCoordinator-PAC#PAC-01M
https://omniscia.io/reports/perpetual-airdrop-core-airdrop-implementation-6764a620a484710019f717c3/code-style/PerpetualAirdropCoordinator-PAC#PAC-03C


The Perpetual Airdrop Project team provided us with a follow-up commit hash to evaluate the

remediations of the two aforementioned exhibits.

We validated that both exhibits have been adequately addressed, and thus consider that all

outputs of the audit report have been properly consumed by the Perpetual Airdrop Project

team with no outstanding remediative actions remaining.

Post-Audit Conclusion (9fe8a4a3fc)



Severity Identified Alleviated Partially Alleviated Acknowledged

0 0 0 0

12 12 0 0

1 1 0 0

2 2 0 0

0 0 0 0

During the audit, we filtered and validated a total of 6 findings utilizing static analysis

tools as well as identified a total of 9 findings during the manual review of the codebase.

We strongly recommend that any minor severity or higher findings are dealt with promptly

prior to the project's launch as they can introduce potential misbehaviours of the system as

well as exploits.

🎯 Scope

💻 Compilation

🔍 Static Analysis

👁️ Manual Review

🖋️ Code Style

Audit Synopsis

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/scope
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/compilation
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/static-analysis
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/manual-review
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/code-style


Scope

The audit engagement encompassed a specific list of contracts that were present in the

commit hash of the repository that was in scope. The tables below detail certain meta-data

about the target of the security assessment and a navigation chart is present at the end that

links to the relevant findings per file.

Repository: https://github.com/perpetual-airdrop/contracts

Commit: a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c

Language: Solidity

Network: Ethereum

Revisions: a5e8ff5ca3, 61de1a0b9a, 9fe8a4a3fc

File Total Finding(s)

contracts/AirdropSourceToken.sol (AST) 1

contracts/DatetimeLibrary.sol (DLY) 2

contracts/PerpetualAirdropToken.sol (PAT) 3

contracts/types/PerpetualAirdropTypes.sol (PAS) 0

contracts/PerpetualAirdropCoordinator.sol (PAC) 7

contracts/TripleAirdrop.sol (TAP) 2

Target

Contracts Assessed

https://github.com/perpetual-airdrop/contracts


Compilation

The project utilizes hardhat  as its development pipeline tool, containing an array of tests and

scripts coded in TypeScript.

To compile the project, the compile  command needs to be issued via the npx  CLI tool to 

hardhat :

The hardhat  tool automatically selects Solidity version 0.8.20  based on the version specified

within the hardhat.config.ts  file.

The project contains discrepancies with regards to the Solidity version used as the pragma

statements of the contracts are open-ended ( ^0.8.20 ).

We advise them to be locked to 0.8.20  ( =0.8.20 ), the same version utilized for our static

analysis as well as optimizational review of the codebase.

During compilation with the hardhat  pipeline, no errors were identified that relate to the

syntax or bytecode size of the contracts.

npx hardhat compile

BASH



Static Analysis

The execution of our static analysis toolkit identified 47 potential issues within the codebase

of which 36 were ruled out to be false positives or negligible findings.

The remaining 11 issues were validated and grouped and formalized into the 6 exhibits that

follow:

ID Severity Addressed Title

DLY-01S Illegible Numeric Value Representations

PAC-01S Inexistent Event Emission

PAC-02S Inexistent Sanitization of Input Address

PAC-03S Inexistent Visibility Specifier

PAT-01S Inexistent Event Emissions

PAT-02S Inexistent Sanitization of Input Addresses

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/static-analysis/DatetimeLibrary-DLY#DLY-01S
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/static-analysis/PerpetualAirdropCoordinator-PAC#PAC-01S
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/static-analysis/PerpetualAirdropCoordinator-PAC#PAC-02S
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/static-analysis/PerpetualAirdropCoordinator-PAC#PAC-03S
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/static-analysis/PerpetualAirdropToken-PAT#PAT-01S
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/static-analysis/PerpetualAirdropToken-PAT#PAT-02S


Manual Review

A thorough line-by-line review was conducted on the codebase to identify potential

malfunctions and vulnerabilities in Perpetual Airdrop Project.

As the project at hand implements Perpetual Airdrop Project, intricate care was put into

ensuring that the flow of funds within the system conforms to the specifications and

restrictions laid forth within the protocol's specification.

We validated that all state transitions of the system occur within sane criteria and that

all rudimentary formulas within the system execute as expected. We pinpointed multiple

potential misconfigurations permitted within the system which could have had minor-to-

moderate ramifications to its overall operation; we urge the Perpetual Airdrop Project team

to closely evaluate all minor-and-above exhibits within the audit report.

Additionally, the system was investigated for any other commonly present attack vectors such

as re-entrancy attacks, mathematical truncations, logical flaws and ERC / EIP standard

inconsistencies. The documentation of the project was satisfactory to the extent it need be.

A total of 9 findings were identified over the course of the manual review of which 3 findings

concerned the behaviour and security of the system. The non-security related findings, such as

optimizations, are included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

ID Severity Addressed Title

DLY-01M Inexistent Subtraction of Year

PAC-01M Inexistent Validation of Non-Zero Winners

TAP-01M Inexistent Prevention of Duplicate Token Entries

https://eips.ethereum.org/
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/code-style
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/manual-review/DatetimeLibrary-DLY#DLY-01M
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/manual-review/PerpetualAirdropCoordinator-PAC#PAC-01M
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/manual-review/TripleAirdrop-TAP#TAP-01M


Code Style

During the manual portion of the audit, we identified 6 optimizations that can be applied to

the codebase that will decrease the operational cost associated with the execution of a

particular function and generally ensure that the project complies with the latest best practices

and standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the

code should make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID Severity Addressed Title

AST-01C Inefficient Re-Reservation of Memory

PAC-01C Ineffectual Usage of Safe Arithmetics

PAC-02C Inefficient Indices Initialization

PAC-03C Inefficient mapping  Lookups

PAT-01C Improper Use-Case Permittance

TAP-01C Redundant Multi-Entry Eligibility Mechanism

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/code-style/AirdropSourceToken-AST#AST-01C
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/code-style/PerpetualAirdropCoordinator-PAC#PAC-01C
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/code-style/PerpetualAirdropCoordinator-PAC#PAC-02C
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/code-style/PerpetualAirdropCoordinator-PAC#PAC-03C
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/code-style/PerpetualAirdropToken-PAT#PAT-01C
https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/code-style/TripleAirdrop-TAP#TAP-01C


DatetimeLibrary Static Analysis Findings

Type Severity Location

Code Style

DatetimeLibrary.sol:


• I-1: L5


• I-2: L6

The linked representations of numeric literals are sub-optimally represented decreasing the

legibility of the codebase.

contracts/DatetimeLibrary.sol

DLY-01S: Illegible Numeric Value Representations

Description:

Example:

uint256 constant OFFSET19700101 = 2440588;

SOL

5

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#code-style


To properly illustrate each value's purpose, we advise the following guidelines to be followed.

For values meant to depict fractions with a base of 1e18 , we advise fractions to be utilized

directly (i.e. 1e17  becomes 0.1e18 ) as they are supported.
For values meant to represent a

percentage base, we advise each value to utilize the underscore ( _ ) separator to discern the

percentage decimal (i.e. 10000  becomes 100_00 , 300  becomes 3_00  and so on).
Finally, for

large numeric values we simply advise the underscore character to be utilized again to

represent them (i.e. 1000000  becomes 1_000_000 ).

The number literals were appropriately adjusted, introducing the underscore character in the 

OFFSET19700101  declaration whilst using a more explicit multiplication for the seconds in a day.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):



PerpetualAirdropCoordinator Static Analysis

Findings

Type Severity Location

Language Specific PerpetualAirdropCoordinator.sol:L142-L144

The linked function adjusts a sensitive contract variable yet does not emit an event for it.

contracts/PerpetualAirdropCoordinator.sol

PAC-01S: Inexistent Event Emission

Description:

Example:

function setRandomnessProvider(address _randomnessProviderAddress) external 

onlyOwner {

    randomnessProvider = IRandomnessProvider(_randomnessProviderAddress);

}

SOL

142

143

144

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#language-specific


We advise an event  to be declared and correspondingly emitted to ensure off-chain processes

can properly react to this system adjustment.

The RandomnessProviderSet  event was introduced to the codebase and is correspondingly

emitted in the PerpetualAirdropCoordinator::setRandomnessProvider  function, addressing this

exhibit in full.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropCoordinator.sol#L142-L144


Type Severity Location

Input Sanitization PerpetualAirdropCoordinator.sol:L142-L144

The linked function accepts an address  argument yet does not properly sanitize it.

The presence of zero-value addresses, especially in constructor  implementations, can cause

the contract to be permanently inoperable. These checks are advised as zero-value inputs are

a common side-effect of off-chain software related bugs.

contracts/PerpetualAirdropCoordinator.sol

PAC-02S: Inexistent Sanitization of Input Address

Description:

Impact:

Example:

function setRandomnessProvider(address _randomnessProviderAddress) external 

onlyOwner {

    randomnessProvider = IRandomnessProvider(_randomnessProviderAddress);

}

SOL

142

143

144

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#input-sanitization


We advise some basic sanitization to be put in place by ensuring that the address  specified is

non-zero.

The input _randomnessProviderAddress  address argument of the 

PerpetualAirdropCoordinator::setRandomnessProvider  function is adequately sanitized as non-

zero in the latest in-scope revision of the codebase, addressing this exhibit.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropCoordinator.sol#L142-L144


Type Severity Location

Code Style PerpetualAirdropCoordinator.sol:L28

The linked variable has no visibility specifier explicitly set.

contracts/PerpetualAirdropCoordinator.sol

PAC-03S: Inexistent Visibility Specifier

Description:

Example:

uint32 numRegularAirdropWinners;

SOL

28

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#code-style


We advise one to be set so to avoid potential compilation discrepancies in the future as the

current behaviour is for the compiler to assign one automatically which may deviate between 

pragma  versions.

The public  visibility specifier has been introduced to the referenced variable, preventing

potential compilation discrepancies and addressing this exhibit.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):



PerpetualAirdropToken Static Analysis Findings

Type Severity Location

Language Specific

PerpetualAirdropToken.sol:


• I-1: L34-L36


• I-2: L38-L40


• I-3: L42-L44

The linked functions adjust sensitive contract variables yet do not emit an event for it.

contracts/PerpetualAirdropToken.sol

PAT-01S: Inexistent Event Emissions

Description:

Example:

function setCoordinator(address _coordinator) external onlyOwner {

    coordinator = _coordinator;

}

SOL

34

35

36

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#language-specific


We advise an event  to be declared and correspondingly emitted for each function to ensure

off-chain processes can properly react to this system adjustment.

The CoordinatorSet , TransactionLoggerAdded , and TransactionLoggerRemoved  events were

introduced to the codebase and are correspondingly emitted in the 

PerpetualAirdropToken::setCoordinator , PerpetualAirdropToken::addTransactionLogger , and 

PerpetualAirdropToken::removeTransactionLogger  functions respectively, addressing this exhibit

in full.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L34-L36
https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L38-L40
https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L42-L44


Type Severity Location

Input Sanitization

PerpetualAirdropToken.sol:


• I-1: L34-L36


• I-2: L38-L40


• I-3: L42-L44

The linked function(s) accept address  arguments yet do not properly sanitize them.

The presence of zero-value addresses, especially in constructor  implementations, can cause

the contract to be permanently inoperable. These checks are advised as zero-value inputs are

a common side-effect of off-chain software related bugs.

contracts/PerpetualAirdropToken.sol

PAT-02S: Inexistent Sanitization of Input Addresses

Description:

Impact:

Example:

function setCoordinator(address _coordinator) external onlyOwner {

    coordinator = _coordinator;

}

SOL

34

35

36

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#input-sanitization


We advise some basic sanitization to be put in place by ensuring that each address  specified is

non-zero.

All input argument(s) of the PerpetualAirdropToken::setCoordinator , 

PerpetualAirdropToken::addTransactionLogger , and 

PerpetualAirdropToken::removeTransactionLogger  functions are adequately sanitized as non-

zero in the latest in-scope revision of the codebase, addressing this exhibit.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L34-L36
https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L38-L40
https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/PerpetualAirdropToken.sol#L42-L44


DatetimeLibrary Manual Review Findings

Type Severity Location

Logical Fault DatetimeLibrary.sol:L24

The DatetimeLibrary::_daysToMonth  function does not properly subtract the year from the 

_month  calculation to evaluate the actual month date.

The DatetimeLibrary::_daysToMonth  function will yield continuously inflated values with the

years included.

contracts/DatetimeLibrary.sol

DLY-01M: Inexistent Subtraction of Year

Description:

Impact:

Example:

function _daysToMonth(uint256 _days) internal pure returns (uint256 month) {

    uint256 L = _days + 68569 + OFFSET19700101;

    uint256 N = 4 * L / 146097;

    L = L - (146097 * N + 3) / 4;

    L = L + 31;

    uint256 _month = 80 * L / 2447;

    L = _month / 11;

    _month = _month + 2 - 12 * L;

    month = _month;

SOL

20

21

22

23

24

25

26

27

28

29

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#logical-fault
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/DatetimeLibrary.sol#L20-L30
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/DatetimeLibrary.sol#L20-L30


Example (Cont.):

}

SOL

30



We advise the year to be removed per the original implementation based on the JD formula.

The code of the DatetimeLibrary::_daysToMonth  function (now renamed to 

DatetimeLibrary::_daysToDate ) was updated to reflect the original implementation ensuring

that the month is appropriately evaluated.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/bokkypoobah/BokkyPooBahsDateTimeLibrary/blob/master/contracts/BokkyPooBahsDateTimeLibrary.sol#L96-L97
https://github.com/perpetual-airdrop/contracts/blob/61de1a0b9a46e240dd85f368896ad9409af7358f/contracts/DatetimeLibrary.sol#L20-L30


PerpetualAirdropCoordinator Manual Review

Findings

Type Severity Location

Input Sanitization PerpetualAirdropCoordinator.sol:L117

The PerpetualAirdropCoordinator::_setRegularAirdropConfig  function does not validate that a

non-zero amount of airdrop winners have been defined.

The reward distribution mechanism will fail to execute properly if a distribution has been

defined with zero winners as no distributions beyond it will be processed.

contracts/PerpetualAirdropCoordinator.sol

PAC-01M: Inexistent Validation of Non-Zero Winners

Description:

Impact:

Example:

// Set regular distributions

for (uint256 i = 0; i < _config.distributions.length; i++) {

    RegularDistribution memory _distribution = _config.distributions[i];

    numRegularAirdropWinners += _distribution.numWinners;

    // Create a new RegularDistribution in storage

    regularAirdropConfig.distributions.push();

    RegularDistribution storage newDistribution = 

regularAirdropConfig.distributions[

        regularAirdropConfig.distributions.length - 1

    ];

SOL

114

115

116

117

118

119

120

121

122

123

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#input-sanitization
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropCoordinator.sol#L107-L140


Example (Cont.):

    // Set the basic properties

    newDistribution.sourceToken = _distribution.sourceToken;

    newDistribution.numWinners = _distribution.numWinners;

    newDistribution.distributionType = _distribution.distributionType;

    // Copy the distributions array

    for (uint256 j = 0; j < _distribution.distributions.length; j++) {

        newDistribution.distributions.push(

            Distribution({

                token: _distribution.distributions[j].token,

                amount: _distribution.distributions[j].amount

            })

        );

    }

}

SOL

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139



We advise such restrictions to be imposed, ensuring that no misbehaviours may arise when

distributing rewards from a regular airdrop.

While a non-zero check has been introduced for the numRegularAirdropWinners  variable, no

such check was introduced for the actual _distribution.numWinners  variable which renders this

exhibit partially addressed.

The code was updated further to ensure that the _distribution.numWinners  is non-zero for

each entry, alleviating this exhibit in full.

Recommendation:

Alleviation (61de1a0b9a):

Alleviation (9fe8a4a3fc):



TripleAirdrop Manual Review Findings

Type Severity Location

Input Sanitization TripleAirdrop.sol:L23-L25

Any duplicate token entry in the _tokens  configured for a TripleAirdrop  will result in double

accounting of balances and should be disallowed.

A TripleAirdrop  defined with duplicate entries will misbehave in its cumulative accounting.

contracts/TripleAirdrop.sol

TAP-01M: Inexistent Prevention of Duplicate Token

Entries

Description:

Impact:

Example:

for (uint256 i = 0; i < _tokens.length; i++) {

    tokens.add(_tokens[i]);

}

SOL

23

24

25

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#input-sanitization


We advise the TripleAirdrop::constructor  to prevent duplicate entries either by requiring that

the value yielded by the EnumerableSet::add  function is true  or by mandating that the tokens

are defined in a strictly ascending order, either of which we consider an adequate resolution to

this exhibit.

A require  check was introduced as advised, ensuring duplicate tokens cannot be introduced.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/TripleAirdrop.sol#L16-L31


AirdropSourceToken Code Style Findings

Type Severity Location

Gas Optimization AirdropSourceToken.sol:L22, L34

The referenced return  statement can yield the already-reserved winners  variable directly.

contracts/AirdropSourceToken.sol

AST-01C: Inefficient Re-Reservation of Memory

Description:

Example:

address[] memory winners = new address[](numWinners);

uint256 totalLikelihood;

uint256[] memory cumListLikelihoods = new uint256[](numLists);

// Calculate the likelihood for each list

for (uint8 i = 0; i < numLists; i++) {

    uint256 listLikelihood = balanceThresholds[i] * eligibilityLists[i].length();

    totalLikelihood += listLikelihood;

    cumListLikelihoods[i] = totalLikelihood;

}

SOL

22

23

24

25

26

27

28

29

30

31

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#gas-optimization


Example (Cont.):

if (totalLikelihood == 0) {

    return new address[](numWinners);

}

SOL

32

33

34

35



We advise this to be done so, optimizing the code's gas cost.

The code was optimized as advised, yielding the already-declared winners  array in an optimal

way.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):



PerpetualAirdropCoordinator Code Style

Findings

Type Severity Location

Language Specific PerpetualAirdropCoordinator.sol:L302

The linked mathematical operation is guaranteed to be performed safely by logical inference,

such as surrounding conditionals evaluated in require  checks or if-else  constructs.

contracts/PerpetualAirdropCoordinator.sol

PAC-01C: Ineffectual Usage of Safe Arithmetics

Description:

Example:

lastIndex--;

SOL

302

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#language-specific


Given that safe arithmetics are toggled on by default in pragma  versions of 0.8.X , we advise

the linked statement to be wrapped in an unchecked  code block thereby optimizing its

execution cost.

The referenced operation has been safely wrapped in an unchecked  code block optimizing its

gas cost.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):



Type Severity Location

Gas Optimization PerpetualAirdropCoordinator.sol:L281-L283

The referenced indices are inefficiently initialized as the code could simply utilize the

participants directly.

contracts/PerpetualAirdropCoordinator.sol

PAC-02C: Inefficient Indices Initialization

Description:

Example:

// Assign extra amounts using randomWords

if (remainder > 0) {

    uint256[] memory available = new uint256[](numParticipants);

    // Initialize available indices

    for (uint256 i = 0; i < numParticipants; i++) {

        available[i] = i;

    }

    uint256 lastIndex = numParticipants;

SOL

276

277

278

279

280

281

282

283

284

285

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#gas-optimization


Example (Cont.):

    for (uint256 i = 0; i < remainder; i++) {

        uint256 randomIndex = randomWords[i] % lastIndex;

        uint256 selectedIndex = available[randomIndex];

        address selectedParticipant = participants[selectedIndex];

        for (uint256 j = 0; j < numDistributions; j++) {

            Distribution memory distribution = initialAirdropDistributions[j];

            EnumerableMap.AddressToUintMap storage tokenEarnings = earnings[

                distribution.token

            ];

            (, uint256 currentAmount) = 

tokenEarnings.tryGet(selectedParticipant);

            tokenEarnings.set(selectedParticipant, currentAmount + 

distribution.amount);

        }

        // Move the picked participant to the end of the array to avoid re-

selection

        lastIndex--;

        if (randomIndex != lastIndex) {

            available[randomIndex] = available[lastIndex];

        }

    }

}

SOL

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307



We advise the participants to be utilized directly, optimizing the code's gas cost significantly.

The code was updated per our recommendation, optimizing its gas cost significantly.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):



Type Severity Location

Gas Optimization PerpetualAirdropCoordinator.sol:L531, L536

The linked statements perform key-based lookup operations on mapping  declarations from

storage multiple times for the same key redundantly.

contracts/PerpetualAirdropCoordinator.sol

PAC-03C: Inefficient mapping  Lookups

Description:

Example:

require(earnings[token].contains(account), 'No earnings');

uint256 amount = earnings[token].get(account);

// Update state

earnings[token].remove(account);

SOL

531

532

533

534

535

536

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#gas-optimization


As the lookups internally perform an expensive keccak256  operation, we advise the lookups to

be cached wherever possible to a single local declaration that either holds the value of the 

mapping  in case of primitive types or holds a storage  pointer to the struct  contained.

As the compiler's optimizations may take care of these caching operations automatically at-

times, we advise the optimization to be selectively applied, tested, and then fully adopted to

ensure that the proposed caching model indeed leads to a reduction in gas costs.

While the exhibit was marked as addressed in the GitHub repository, no alleviation was

observed for it rendering it to remain open.

The referenced mapping  lookup pair has been optimized by storing the earnings[token]  lookup

to a local storage  variable, optimizing the codebase as advised.

Recommendation:

Alleviation (61de1a0b9a):

Alleviation (9fe8a4a3fc):



PerpetualAirdropToken Code Style Findings

Type Severity Location

Standard Conformity PerpetualAirdropToken.sol:L131-L144

The PerpetualAirdropToken::delegateBySig  function will only permit a signed payload by the

caller itself which renders it redundant.

contracts/PerpetualAirdropToken.sol

PAT-01C: Improper Use-Case Permittance

Description:

Example:

/**

 * @dev Restrict delegation to only allow self-delegation.

 */

function delegate(address delegatee) public override {

    require(

        delegatee == msg.sender,

        'Can only delegate to yourself'

    );

    super.delegate(delegatee);

}

SOL

117

118

119

120

121

122

123

124

125

126

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#standard-conformity
https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L131-L144


Example (Cont.):

/**

 * @dev Restrict delegation by signature to only allow self-delegation.

 */

function delegateBySig(

    address delegatee,

    uint256 nonce,

    uint256 expiry,

    uint8 v,

    bytes32 r,

    bytes32 s

) public override {

    require(

        delegatee == msg.sender,

        'RestrictedDelegationToken: Can only delegate to yourself'

    );

    super.delegateBySig(delegatee, nonce, expiry, v, r, s);

}

SOL

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144



We advise it to be restricted altogether, ensuring callers invoke the 

PerpetualAirdropToken::delegate  function instead.

Signature-based delegation is properly restricted in the contract as advised, addressing this

inconsistency.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):

https://github.com/perpetual-airdrop/contracts/blob/a5e8ff5ca31fe8c5fc57732866142ce01ab9a49c/contracts/PerpetualAirdropToken.sol#L120-L126


TripleAirdrop Code Style Findings

Type Severity Location

Gas Optimization TripleAirdrop.sol:L29, L70-L81

The TripleAirdrop  will maintain multiple eligibility lists yet the balance threshold for each will

be the same, meaning that maintaining each one is incorrect.

contracts/TripleAirdrop.sol

TAP-01C: Redundant Multi-Entry Eligibility Mechanism

Description:

Example:

for (uint256 i = 0; i < numLists; i++) {

    eligibilityLists.push();

    balanceThresholds.push(_tokens.length * _singleTokenBalanceThreshold);

}

SOL

27

28

29

30

https://omniscia.io/reports/perpetual-airdrop-project-original-perpetual-airdrop-tokens-6764a620a484710019f717c3/appendix/finding-types#gas-optimization


We advise the system to maintain a single eligibility list, greatly optimizing its gas cost.

The multi-entry eligibility mechanism was updated to incorporate the iterator in the calculation

of the threshold, ensuring that there is meaning in the distinct balance thresholds and thus

addressing this exhibit.

Recommendation:

Alleviation (61de1a0b9a46e240dd85f368896ad9409af7358f):



Finding Types

A description of each finding type included in the report can be found below and is linked by

each respective finding. A full list of finding types Omniscia has defined will be viewable at the

central audit methodology we will publish soon.

As there are no inherent guarantees to the inputs a function accepts, a set of guards should

always be in place to sanitize the values passed in to a particular function.

These types of issues arise when a linked code segment may not behave as expected, either

due to mistyped code, convoluted if blocks, overlapping functions / variable names and other

ambiguous statements.

Language specific issues arise from certain peculiarities that the Circom language boasts that

discerns it from other conventional programming languages.

Circom defaults to using the BN128 scalar field (a 254-bit prime field), but it also supports

BSL12-381 (which has a 255-bit scalar field) and Goldilocks (with a 64-bit scalar field).

However, since there are no constants denoting either the prime or the prime size in bits

available in the Circom language, some Circomlib templates like Sign  (which returns the sign

of the input signal), and AliasCheck  (used by the strict versions of Num2Bits  and Bits2Num ),

hardcode either the BN128 prime size or some other constant related to BN128. Using these

circuits with a custom prime may thus lead to unexpected results and should be avoided.

In these types of findings, we identify whether a project conforms to a particular naming

convention and whether that convention is consistent within the codebase and legible. In case

of inconsistencies, we point them out under this category. Additionally, variable shadowing falls

under this category as well which is identified when a local-level variable contains the same

name as a toplevel variable in the circuit.

Input Sanitization

Indeterminate Code

Language Specific

Curve Specific

Code Style

Mathematical Operations



This category is used when a mathematical issue is identified. This implies an issue with the

implementation of a calculation compared to the specifications.



This category is a bit broad and is meant to cover implementations that contain flaws in the

way they are implemented, either due to unimplemented functionality, unaccounted-for edge

cases or similar extraordinary scenarios.

This category is used when information that is meant to be kept private is made public in some

way.

Under-constrained signals are one of the most common issues in zero-knowledge circuits.

Issues with proof generation fall under this category.

Logical Fault

Privacy Concern

Proof Concern



Severity Definition

In the ever-evolving world of blockchain technology, vulnerabilities continue to take on new

forms and arise as more innovative projects manifest, new blockchain-level features are

introduced, and novel layer-2 solutions are launched. When performing security reviews, we

are tasked with classifying the various types of vulnerabilities we identify into subcategories to

better aid our readers in understanding their impact.

Within this page, we will clarify what each severity level stands for and our approach in

categorizing the findings we pinpoint in our audits. To note, all severity assessments are

performed as if the contract's logic cannot be upgraded regardless of the underlying

implementation.



There are five distinct severity levels within our reports; unknown , informational , minor , 

medium , and major . A TL;DR overview table can be found below as well as a dedicated chapter

to each severity level:

Impact

(None)

Impact

(Low)

Impact

(Moderate)

Impact

(High)

Likelihood (None)

Likelihood (Low)

Likelihood (Moderate)

Likelihood (High)

The unknown  severity level is reserved for misbehaviors we observe in the codebase that

cannot be quantified using the above metrics. Examples of such vulnerabilities include

potentially desirable system behavior that is undocumented, reliance on external

dependencies that are out-of-scope but could result in some form of vulnerability arising, use

of external out-of-scope contracts that appears incorrect but cannot be pinpointed, and other

such vulnerabilities.

In general, unknown  severity level vulnerabilities require follow-up information by the project

being audited and are either adjusted in severity (if valid), or marked as nullified (if invalid).

Additionally, the unknown  severity level is sometimes assigned to centralization issues that

cannot be assessed in likelihood due to their exploitation being tied to the honesty of the

project's team.

The informational  severity level is dedicated to findings that do not affect the code

functionally and tend to be stylistic or optimizational in nature. Certain edge cases are also set

under informational  vulnerabilities, such as overflow operations that will not manifest in the

lifetime of the contract but should be guarded against as a best practice, to give an example.

Severity Levels

Unknown Severity

Informational Severity



The minor  severity level is meant for vulnerabilities that require functional changes in the code

but tend to either have little impact or be unlikely to be recreated in a production environment.

These findings can be acknowledged except for findings with a moderate impact but low

likelihood which must be alleviated.

The medium  severity level is assigned to vulnerabilities that must be alleviated and have an

observable impact on the overall project. These findings can only be acknowdged if the project

deems them desirable behavior and we disagree with their point-of-view, instead urging them

to reconsider their stance while marking the exhibit as acknowledged given that the project

has ultimate say as to what vulnerabilities they end up patching in their system.

The major  severity level is the maximum that can be specified for a finding and indicates a

significant flaw in the code that must be alleviated.

Minor Severity

Medium Severity

Major Severity



As the preface chapter specifies, the blockchain space is constantly reinventing itself meaning

that new vulnerabilities take place and our understanding of what security means differs year-

to-year.

In order to reliably assess the likelihood and impact of a particular vulnerability, we instead

apply an abstract measurement of a vulnerability's impact, duration the impact is applied for,

and probability that the vulnerability would be exploited in a production environment.

Our proposed definitions are inspired by multiple sources in the security community and are as

follows:

Impact (High): A core invariant of the protocol can be broken for an extended duration.

Impact (Moderate): A non-core invariant of the protocol can be broken for an extended

duration or at scale, or an otherwise major-severity issue is reduced due to hypotheticals or

external factors affecting likelihood.

Impact (Low): A non-core invariant of the protocol can be broken with reduced likelihood or

impact.

Impact (None): A code or documentation flaw whose impact does not achieve low severity, or

an issue without theoretical impact; a valuable best-practice

Likelihood (High): A flaw in the code that can be exploited trivially and is ever-present.

Likelihood (Moderate): A flaw in the code that requires some external factors to be exploited

that are likely to manifest in practice.

Likelihood (Low): A flaw in the code that requires multiple external factors to be exploited

that may manifest in practice but would be unlikely to do so.

Likelihood (None): A flaw in the code that requires external factors proven to be impossible in

a production environment, either due to mathematical constraints, operational constraints,

or system-related factors (i.e. EIP-20 tokens not being re-entrant).

Likelihood & Impact Assessment



Disclaimer

The following disclaimer applies to all versions of the audit report produced (preliminary /

public / private) and is in effect for all past, current, and future audit reports that are produced

and hosted under Omniscia:

Omniscia ("Omniscia") has conducted an independent security review to verify the integrity of

and highlight any vulnerabilities, bugs or errors, intentional or unintentional, that may be

present in the codebase that were provided for the scope of this Engagement.

Blockchain technology and the cryptographic assets it supports are nascent technologies. This

makes them extremely volatile assets. Any assessment report obtained on such volatile and

nascent assets may include unpredictable results which may lead to positive or negative

outcomes.

In some cases, services provided may be reliant on a variety of third parties. This security

review does not constitute endorsement, agreement or acceptance for the Project and

technology that was reviewed. Users relying on this security review should not consider this as

having any merit for financial advice or technological due diligence in any shape, form or

nature.

The veracity and accuracy of the findings presented in this report relate solely to the

proficiency, competence, aptitude and discretion of our auditors. Omniscia and its employees

make no guarantees, nor assurance that the contracts are free of exploits, bugs,

vulnerabilities, deprecation of technologies or any system / economical / mathematical

malfunction.

This audit report shall not be printed, saved, disclosed nor transmitted to any persons or

parties on any objective, goal or justification without due written assent, acquiescence or

approval by Omniscia.

All the information/opinions/suggestions provided in this report does not constitute financial or

investment advice, nor should it be used to signal that any person reading this report should

invest their funds without sufficient individual due diligence regardless of the findings

presented in this report.

IMPORTANT TERMS & CONDITIONS REGARDING OUR

SECURITY AUDITS/REVIEWS/REPORTS AND ALL

PUBLIC/PRIVATE CONTENT/DELIVERABLES



Information in this report is provided 'as is'. Omniscia is under no covenant to the

completeness, accuracy or solidity of the contracts reviewed. Omniscia's goal is to help reduce

the attack vectors/surface and the high level of variance associated with utilizing new and

consistently changing technologies.

Omniscia in no way claims any guarantee, warranty or assurance of security or functionality of

the technology that was in scope for this security review.

In no event will Omniscia, its partners, employees, agents or any parties related to the

design/creation of this security review be ever liable to any parties for, or lack thereof,

decisions and/or actions with regards to the information provided in this security review.

Cryptocurrencies and all other technologies directly or indirectly related to cryptocurrencies

are not standardized, highly prone to malfunction and extremely speculative by nature. No due

diligence and/or safeguards may be insufficient and users should exercise maximum caution

when participating and/or investing in this nascent industry.

The preparation of this security review has made all reasonable attempts to provide clear and

actionable recommendations to the Project team (the “client”) with respect to the rectification,

amendment and/or revision of any highlighted issues, vulnerabilities or exploits within the

contracts in scope for this engagement.

It is the sole responsibility of the Project team to provide adequate levels of test and perform

the necessary checks to ensure that the contracts are functioning as intended, and more

specifically to ensure that the functions contained within the contracts in scope have the

desired intended effects, functionalities and outcomes, as documented by the Project team.

All services, the security reports, discussions, work product, attack vectors description or any

other materials, products or results of this security review engagement is provided "as is" and

"as available" and with all faults, uncertainty and defects without warranty or guarantee of any

kind.

Omniscia will assume no liability or responsibility for delays, errors, mistakes, or any

inaccuracies of content, suggestions, materials or for any loss, delay, damage of any kind

which arose as a result of this engagement/security review.

Omniscia will assume no liability or responsibility for any personal injury, property damage, of

any kind whatsoever that resulted in this engagement and the customer having access to or

use of the products, engineers, services, security report, or any other other materials.



For avoidance of doubt, this report, its content, access, and/or usage thereof, including any

associated services or materials, shall not be considered or relied upon as any form of

financial, investment, tax, legal, regulatory, or any other type of advice.


